Cs Interview Cheat Sheet



  • SQL Cheat Sheet
    • Background: What is SQL? Why do we need it?
    • Managing Tables
    • Manipulating Data
    • Retrieving Attributes
    • JOINS
    • Subqueries
    • Using Functions to Customize ResultSet
    • GROUPING DATA

SQL Cheat Sheet

Background: What is SQL? Why do we need it?

Simran works at Hackr as a technical writer. The graduate in MS Computer Science from the well known CS hub, aka Silicon Valley, is also an editor of the website. She enjoys writing about any tech topic, including programming, algorithms, cloud, data science, and AI. Traveling, sketching, and gardening are the hobbies that interest her. EXPERIENCE LEAGUE. Find Experience League learning pathways. Join the Experience League community. Start your AEM guided onboarding journey. Build Analytics skills with curated help topics.

Relax - a cheat sheet is not really cheating. It's a checklist to make sure you stay focused before, during and after the interview. Creating a cheat sheet will help you feel more prepared and confident. You shouldn't memorize what's on the sheet or check it off during the interview. You should use your cheat sheet to remind you of key facts.

SQL is a database language used to query and manipulate the data in the database.

Main objectives:

  • To provide an efficient and convenient environment
  • Manage information about users who interact with the DBMS

The SQL statements can be categorized as

Data Definition Language(DDL) Commands:

  • CREATE: creates a new database object, such as a table.
  • ALTER: used to modify the database object
  • DROP: used to delete the objects.

Data Manipulation Language(DML) Commands:

  • INSERT: used to insert a new data row record in a table.
  • UPDATE: used to modify an existing record in a table.
  • DELETE: used delete a record from the table.

Data Control Language(DCL) Commands:

  • GRANT: used to assign permission to users to access database objects.
  • REVOKE: used to deny permission to users to access database objects.

Data Query Language(DQL) Commands:

  • SELECT: it is the DQL command to select data from the database.

Data Transfer Language(DTL) Commands:

  • COMMIT: used to save any transaction into the database permanently.
  • ROLLBACK: restores the database to the last committed state.

Identifying Data Types

Data types specify the type of data that an object can contain, such as integer data or character data. We need to specify the data type according to the data to be stored.

Following are some of the essential data types:

Data TypeUsed to Store
intInteger data
smallintInteger data
tinyintInteger data
bigintInteger data
decimalNumeric data type with a fixed precision and scale.
numericnumeric data type with a fixed precision and scale.
floatfloating precision data
moneymonetary data
datetimedata and time data
char(n)fixed length character data
varchar(n)variable length character data
textcharacter string
bitinteger data with 0 or 1
imagevariable length binary data to store images
realfloating precision number
binaryfixed length binary data
cursorcursor reference
sql_variantdifferent data types
timestampunique number in the database that is updated every time in a row that contains timestamp is inserted or updated.
tabletemporary set of rows returned as a result set of a table-valued function.
xmlstore and return xml values

Managing Tables

Create Table

Table can be created using the CREATE TABLE statement. The syntax is as follows:

Example: Create a table named EmployeeLeave in Human Resource schema with the following attributes:

ColumnsData TypeChecks
EmployeeIDintNOT NULL
LeaveStartDatedateNOT NULL
LeaveEndDatedateNOT NULL
LeaveReasonvarchar(100)NOT NULL
LeaveTypechar(2)NOT NULL
Constraints in SQL

Constraints define rules that must be followed to maintain consistency and correctness of data. A constraint can be created by using either of the following statements:

Types of Constraints:
ConstraintDescriptionSyntax
Primary keyColumns or columns that uniquely identify all rows in the table.

CREATE TABLE table_name

( col_name [CONSTRAINT constraint_name PRIMARY KEY] (col_name(s))

)

Unique keyEnforces uniqueness on non primary key columns.
Foreign keyIs used to remove the inconsistency in two tables when the data depends on other tables.
CheckEnforce domain integrity by restricting the values to be inserted in the column.

3.2 Modifying Tables

Modify table using ALTER TABLE statement when:

  1. Adding column
  2. Altering data type
  3. Adding or removing constraints

Syntax of ALTER TABLE:

Renaming a Table

A table can be renamed whenever required using RENAME TABLE statement:

RENAME TABLE old_table_name TO new_table_name;

Dropping a Table versus Truncate Table

A table can be dropped or deleted when no longer required using DROP TABLE statement:

The contents of the table can be deleted when no longer required without deleting the table itself using TRUNCATE TABLE statement:

Manipulating Data

Storing Data in a Table

Syntax:

Example: Inserting data into Student table.

Example: Inserting multiple data into Student table.

Copying Data from one table to another:

Updating Data in a Table

Data can be updated in the table using UPDATE DML statement:

Example update marks of Andy to 85

Deleting Data from a Table

A row can be deleted when no longer required using DELETE DML statement.

Syntax:

Deleting all records from a table:

Retrieving Attributes

One or more column can be displayed while retrieving data from the table.

One may want to view all the details of the Employee table or might want to view few columns.

Required data can be retrieved data from the database tables by using the SELECT statement.

The syntax of SELECT statement is:

Consider the following Student table:

StudentIDFirstNameLastNameMarks
101JohnRay78
102SteveJobs89
103BenMatt77
104RonNeil65
105AndyClifton65
106ParkJin90

Retrieving Selected Rows

To retrieve selected rows from a table use WHERE clause in the SELECT statement.

HAVING Clause is used instead of WHERE for aggregate functions.

Comparison Operators

Comparison operators test for the similarity between two expressions.

Syntax:

Example of some comparison operators:

Logical Operators

Logical operators are used to SELECT statement to retrieve records based on one or more conditions. More than one logical operator can be combined to apply multiple search conditions.

Syntax:

Types of Logical Operators:
OR Operator
AND Operator
NOT Operator

Range Operator

Range operator retrieves data based on range.

Syntax:

Types of Range operators:
BETWEEN
NOT BETWEEN

Retrieve Records That Match a Pattern

Data from the table can be retrieved that match a specific pattern.

The LIKE keyword matches the given character string with a specific pattern.

Displaying in a Sequence

Use ORDER BY clause to display the data retrieved in a specific order.

Displaying without Duplication

The DISTINCT keyword is used to eliminate rows with duplicate values in a column.

Syntax:

JOINS

Joins are used to retrieve data from more than one table together as a part of a single result set. Two or more tables can be joined based on a common attribute.

Types of JOINS:

Consider two tables Employees and EmployeeSalary

EmployeeID (PK)FirstNameLastNameTitle
1001RonBrentDeveloper
1002AlexMattManager
1003RayMaxiTester
1004AugustBergQuality
EmployeeID (FK)DepartmentSalary
1001Application65000
1002Digital Marketing75000
1003Web45000
1004Software Tools68000
INNER JOIN

An inner join retrieves records from multiple tables by using a comparison operator on a common column.

Syntax:

Example:

OUTER JOIN

An outer join displays the resulting set containing all the rows from one table and the matching rows from another table.

An outer join displays NULL for the column of the related table where it does not find matching records.

Syntax:

Types of Outer Join

LEFT OUTER JOIN: In left outer join all rows from the table on the left side of the LEFT OUTER JOIN keyword is returned, and the matching rows from the table specified on the right side are returned the result set.

Example:

RIGHT OUTER JOIN: In right outer join all rows from the table on the right side of the RIGHT OUTER JOIN keyword are returned, and the matching rows from the table specified on the left side are returned is the result set.

Example:

Cs Interview Cheat Sheet 2020

FULL OUTER JOIN: It is a combination of left outer join and right outer join. This outer join returns all the matching and non-matching rows from both tables. Whilst, the matching records are displayed only once.

Example:

CROSS JOIN
Cs Interview Cheat Sheet

Also known as the Cartesian Product between two tables joins each row from one table with each row of another table. The rows in the result set is the count of rows in the first table times the count of rows in the second table.

Syntax:

EQUI JOIN

An Equi join is the same as inner join and joins tables with the help of foreign key except this join is used to display all columns from both tables.

SELF JOIN

In self join, a table is joined with itself. As a result, one row is in a table correlates with other rows in the same table. In this join, a table name is mentioned twice in the query. Hence, to differentiate the two instances of a single table, the table is given two aliases. Syntax:

Subqueries

An SQL statement that is used inside another SQL statement is termed as a subquery.

They are nested inside WHERE or HAVING clause of SELECT, INSERT, UPDATE and DELETE statements.

  • Outer Query: Query that represents the parent query.
  • Inner Query: Query that represents the subquery.

Using IN Keyword

If a subquery returns more than one value, we might execute the outer query if the values within the columns specified in the condition match any value in the result set of the subquery.

Syntax:

Using EXISTS Keyword

EXISTS clause is used with subquery to check if a set of records exists.

TRUE value is returned by the subquery in case if the subquery returns any row.

Syntax:

Using Nested Subqueries

A subquery can contain more than one subqueries. Subqueries are used when the condition of a query is dependent on the result of another query, which is, in turn, is dependent on the result of another subquery.

Syntax:

Correlated Subquery

A correlated subquery can be defined as a query that depends on the outer query for its evaluation.

Using Functions to Customize ResultSet

Various in-built functions can be used to customize the result set.

Syntax:

Using String Functions

String values in the result set can be manipulated by using string functions.

They are used with char and varchar data types.

Following are the commonly used string functions are:

Function NameExample
left
len
lower
reverse
right
space
str
substring
upper

Using Date Functions

Date functions are used to manipulate date time values or to parse the date values.

Date parsing includes extracting components, such as day, month, and year from a date value.

Some of the commonly used date functions are:

Function NameParametersDescription
dateadd(date part, number, date)Adds the number of date parts to the date.
datediff(date part, date1, date2)Calculates the number of date parts between two dates.
Datename(date part, date)Returns date part from the listed as a character value.
datepart(date part, date)Returns date part from the listed as an integer.
getdate0Returns current date and time
day(date)Returns an integer, which represents the day.
month(date)Returns an integer, which represents the month.
year(date)Returns an integer, which represents the year.

Using Mathematical Functions

Numeric values in a result set can be manipulated in using mathematical functions.

The following table lists the mathematical functions:

Function NameParametersDescription
abs(numeric_expression)Returns an absolute value
acts,asin,atan(float_expression)Returns an angle in radians
cos, sin, cot,tan(float_expression)Returns the cosine, sine, cotangent, or tangent of the angle in radians.
degrees(numeric_expression)Returns the smallest integer greater than or equal to specifies value.
exp(float_expression)Returns the exponential value of the specified value.
floor(numeric_expression)Returns the largest integer less than or equal to the specified value.
log(float_expression)Returns the natural logarithm of the specified value.
pi0Returns the constant value of 3.141592653589793
power(numeric_expression,y)Returns the value of numeric expression to the value of y
radians(numeric_expression)Converts from degrees to radians.
rand([seed])Returns a random float number between 0 and 1.
round(numeric_expression,length)Returns a numeric expression rounded off to the length specified as an integer expression.
sign(numeric_expression)Returns positive, negative or zero.
sqrt(float_expression)Returns the square root of the specified value.

Using Ranking Functions

Ranking functions are used to generate sequential numbers for each row to give a rank based on specific criteria.

Phone Interview Cheat Sheet Pdf

Ranking functions return a ranking value for each row. Following functions are used to rank the records:

  • row_number Function: This function returns the sequential numbers, starting at 1, for the rows in a result set based on a column.
  • rank Function: This function returns the rank of each row in a result set based on specified criteria.
  • dense_rank Function: The dense_rank() function is used where consecutive ranking values need to be given based on specified criteria.

These functions use the OVER clause that determines the ascending or descending sequence in which rows are assigned a rank.

Using Aggregate Functions

The aggregate functions, on execution, summarize the values for a column or group of columns and produce a single value.

Syntax:

Following are the aggregate functions:

Function NameDescription
avgreturns the average of values in a numeric expression, either all or distinct.
countreturns the number of values in an expression, either all or distinct.
minreturns the lowest value in an expression.
maxreturns the highest value in an expression.
sumreturns the total of values in an expression, either all or distinct.

GROUPING DATA

Grouping data means to view data that match a specific criteria to be displayed together in the result set.

Data can be grouped by using GROUP BY, COMPUTE,COMPUTE BY and PIVOT clause in the SELECT statement.

GROUP BY Clause

Summarizes the result set into groups as defined in the query by using aggregate functions.

Syntax:

COMPUTE and COMPUTE BY Clause

This COMPUTE clause, with the SELECT statement, is used to generate summary rows by using aggregate functions in the query result.

The COMPUTE BY clause can be used to calculate summary values of the result set on a group of data.

Syntax:

PIVOT Clause

The PIVOT operator is used to transform a set of columns into values, PIVOT rotates a table-valued expression by turning the unique values from one column in the expression into multiple columns in the output.

Syntax:

People are also reading:

You’ve written your resume and followed all the best practices: it’s fewer than two pages, chronologically highlights your experience and accomplishments and substantiates them with real, concrete examples.

You’ve sent off your cover letter: it’s tailored for the job you want, illustrates your professional narrative and crafts a story explaining why this potential employer should consider you for their position.

Then, bam! You’ve landed the interview. Congrats!

Now what?

One of the best ways you can prepare for an interview is to anticipate the questions you may be asked. Here are some typical questions to expect, and how to answer them:

Interview Cheat Sheet For Managers

What is the greatest accomplishment in your life to date?

Let’s be honest: your greatest accomplishment probably isn’t a professional one—it’s probably marrying the love of your life or raising a child or something personal. So feel free to say that, but follow up with your greatest work accomplishment. You are applying for a job, after all.

What is your greatest disappointment?

Red priest baroque composer. This one can be tricky. Don’t just say your disappointment. Instead, make sure you add what you learned from that disappointment and, ideally, how you’ve used that knowledge since.

What are your strengths?

Organized, creative, strategic—whatever your strengths may be, be prepared to give detailed examples of how you’ve put those strengths into action in a way that has benefited your employers.

What do you need to do better?

Translation: What is your weakness?

Go ahead: state your weakness. We all have them—but, again, be sure you say how you’re addressing it. The key here is to show you’re proactive.

Why are you interested in this company?

Do your homework and have specific examples of what you’re interested in. Do a Google search for recent articles about the company. Check out their Facebook page, like them and see what people are saying. Browse their website, learn about their product line, read their mission and check out recent media releases. The more you know, the better prepared you’ll be.

Job Interview Answers Cheat Sheet

Why are you unhappy with your current company?

This is a bit of a trick question. It’s generally better to say your decision is not based on leaving your current employer, but instead is about pursuing a better opportunity with this company. Do not badmouth your current company—even if you hate the place. Business is a very, very small world.

Where do you see yourself in three to five years?

Interview Cheat Sheet Template

If you know the company well enough to have a specific job in mind, that is optimal. If not, it’s perfectly alright to say you want to continue to develop a functional expertise and assume positions of increasing responsibility.

Can you give some examples of successfully working with others?

This is a great time to articulate that you have been part of successful teams and, if applicable, the leader of successful teams. If you have minimal work experience, feel free to use examples from college, summer jobs or your extracurricular activities.

Why should I hire you for this position?

Give a concise summary of your key skills and how you will make a difference in this job. Your track record should prove it.

Image: Flickr